Journal of Big Data Analytics in Transportation [electronic resource] / edited by Adel W. Sadek, Anuj Sharma.

Інтелектуальна відповідальність: Вид матеріалу: Серіальне виданняПублікація: Singapore : Springer Singapore : Imprint: Springer.Опис: online resourceISSN:
  • 2523-3564
Тематика(и): Додаткові фізичні формати: Printed version: : Немає назвиЕлектронне місцезнаходження та доступ: Зведення: The journal will publish original research papers applying big data techniques to transportation problems. The problems big data techniques are applied to can range from improvement in real-time transportation operations, transportation planning to near term prediction of crash risk. The paper may provide novel ideas about improved data ingestion, data curation, data archiving, data visualization, data security etc. for better transportation decision making. The data being used in the paper should at least satisfy on of the 3 V’s of the Gartner’s definition of big data i.e., high volume, high velocity or high variety. Also, knowledge discovery should use holistic approach instead of sampling and aggregation techniques to be considered as big data application. The techniques could involve CPU, RAM, GPU based high performance computing for batch analytics, stream processing, big data visualization, deep learning, or distributed computing such as block chain applications for enhanced security and smart contracts.
Тип одиниці: ЕЖурнал Списки з цим бібзаписом: Springer EJournals (till 2020.02 Network Access) | Springer EJournals till 2020.02 (Open Access + Network Access)
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

The journal will publish original research papers applying big data techniques to transportation problems. The problems big data techniques are applied to can range from improvement in real-time transportation operations, transportation planning to near term prediction of crash risk. The paper may provide novel ideas about improved data ingestion, data curation, data archiving, data visualization, data security etc. for better transportation decision making. The data being used in the paper should at least satisfy on of the 3 V’s of the Gartner’s definition of big data i.e., high volume, high velocity or high variety. Also, knowledge discovery should use holistic approach instead of sampling and aggregation techniques to be considered as big data application. The techniques could involve CPU, RAM, GPU based high performance computing for batch analytics, stream processing, big data visualization, deep learning, or distributed computing such as block chain applications for enhanced security and smart contracts.

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.