Machine-learning Techniques in Economics [electronic resource] : New Tools for Predicting Economic Growth / by Atin Basuchoudhary, James T. Bang, Tinni Sen.
Вид матеріалу:
Текст Серія: SpringerBriefs in EconomicsПублікація: Cham : Springer International Publishing : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: VI, 94 p. 20 illus., 19 illus. in color. online resourceТип вмісту: - text
- computer
- online resource
- 9783319690148
- 338.9 23
- HD72-88
ЕКнига
Списки з цим бібзаписом:
Springer Ebooks (till 2020 - Open Access)+(2017 Network Access))
|
Springer Ebooks (2017 Network Access))
Why this Book? -- Data, Variables, and Their Sources -- Methodology -- Predicting Economic Growth: A First Look -- Predicting Economic Growth: Which Variables Matter? -- Predicting Recessions: What We Learn from Widening the Goalposts -- Epilogue.
This book develops a machine-learning framework for predicting economic growth. It can also be considered as a primer for using machine learning (also known as data mining or data analytics) to answer economic questions. While machine learning itself is not a new idea, advances in computing technology combined with a dawning realization of its applicability to economic questions makes it a new tool for economists. .
Available to subscribing member institutions only. Доступно лише організаціям членам підписки.
Online access from local network of NaUOA.
Online access with authorization at https://link.springer.com/
Онлайн-доступ з локальної мережі НаУОА.
Онлайн доступ з авторизацією на https://link.springer.com/
Немає коментарів для цієї одиниці.