Theory of Semigroups and Applications [electronic resource] / by Kalyan B. Sinha, Sachi Srivastava.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: Texts and Readings in Mathematics ; 74Публікація: Singapore : Springer Singapore : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XII, 169 p. 1 illus. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9789811048647
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 515.7 23
Класифікація Бібліотеки Конгресу:
  • QA319-329.9
Електронне місцезнаходження та доступ:
Вміст:
Chapter 1. Vector-valued functions -- Chapter 2. C0-semigroups -- Chapter 3. Dissipative operators and holomorphic semigroups -- Chapter 4. Perturbation and convergence of semigroups -- Chapter 5. Chernoff’s Theorem and its applications -- Chapter 6. Markov semigroups -- Chapter 7. Applications to partial differential equations -- Appendix A1. Unbounded operators -- Appendix A2. Fourier transforms -- Appendix A3. Sobolev spaces.
У: Springer eBooksЗведення: The book presents major topics in semigroups, such as operator theory, partial differential equations, harmonic analysis, probability and statistics and classical and quantum mechanics, and applications. Along with a systematic development of the subject, the book emphasises on the explorations of the contact areas and interfaces, supported by the presentations of explicit computations, wherever feasible. Designed into seven chapters and three appendixes, the book targets to the graduate and senior undergraduate students of mathematics, as well as researchers in the respective areas. The book envisages the pre-requisites of a good understanding of real analysis with elements of the theory of measures and integration, and a first course in functional analysis and in the theory of operators. Chapters 4 through 6 contain advanced topics, which have many interesting applications such as the Feynman–Kac formula, the central limit theorem and the construction of Markov semigroups. Many examples have been given in each chapter, partly to initiate and motivate the theory developed and partly to underscore the applications. The choice of topics in this vastly developed book is a difficult one, and the authors have made an effort to stay closer to applications instead of bringing in too many abstract concepts.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Chapter 1. Vector-valued functions -- Chapter 2. C0-semigroups -- Chapter 3. Dissipative operators and holomorphic semigroups -- Chapter 4. Perturbation and convergence of semigroups -- Chapter 5. Chernoff’s Theorem and its applications -- Chapter 6. Markov semigroups -- Chapter 7. Applications to partial differential equations -- Appendix A1. Unbounded operators -- Appendix A2. Fourier transforms -- Appendix A3. Sobolev spaces.

The book presents major topics in semigroups, such as operator theory, partial differential equations, harmonic analysis, probability and statistics and classical and quantum mechanics, and applications. Along with a systematic development of the subject, the book emphasises on the explorations of the contact areas and interfaces, supported by the presentations of explicit computations, wherever feasible. Designed into seven chapters and three appendixes, the book targets to the graduate and senior undergraduate students of mathematics, as well as researchers in the respective areas. The book envisages the pre-requisites of a good understanding of real analysis with elements of the theory of measures and integration, and a first course in functional analysis and in the theory of operators. Chapters 4 through 6 contain advanced topics, which have many interesting applications such as the Feynman–Kac formula, the central limit theorem and the construction of Markov semigroups. Many examples have been given in each chapter, partly to initiate and motivate the theory developed and partly to underscore the applications. The choice of topics in this vastly developed book is a difficult one, and the authors have made an effort to stay closer to applications instead of bringing in too many abstract concepts.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.