Uncertainty Quantification [electronic resource] : An Accelerated Course with Advanced Applications in Computational Engineering / by Christian Soize.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: Interdisciplinary Applied Mathematics ; 47Публікація: Cham : Springer International Publishing : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XXII, 329 p. 110 illus., 86 illus. in color. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783319543390
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 004 23
Класифікація Бібліотеки Конгресу:
  • QA71-90
Електронне місцезнаходження та доступ:
Вміст:
Fundamental Notions in Stochastic Modeling of Uncertainties and their Propagation in Computational Models -- Elements of Probability Theory -- Markov Process and Stochastic Differential Equation -- MCMC Methods for Generating Realizations and for Estimating the Mathematical Expectation of Nonlinear Mappings of Random Vectors -- Fundamental Probabilistic Tools for Stochastic Modeling of Uncertainties -- Brief Overview of Stochastic Solvers for the Propagation of Uncertainties -- Fundamental Tools for Statistical Inverse Problems -- Uncertainty Quantification in Computational Structural Dynamics and Vibroacoustics -- Robust Analysis with Respect to the Uncertainties for Analysis, Updating, Optimization, and Design -- Random Fields and Uncertainty Quantification in Solid Mechanics of Continuum Media.
У: Springer eBooksЗведення: This book presents the fundamental notions and advanced mathematical tools in the stochastic modeling of uncertainties and their quantification for large-scale computational models in sciences and engineering. In particular, it focuses in parametric uncertainties, and non-parametric uncertainties with applications from the structural dynamics and vibroacoustics of complex mechanical systems, from micromechanics and multiscale mechanics of heterogeneous materials. Resulting from a course developed by the author, the book begins with a description of the fundamental mathematical tools of probability and statistics that are directly useful for uncertainty quantification. It proceeds with a well carried out description of some basic and advanced methods for constructing stochastic models of uncertainties, paying particular attention to the problem of calibrating and identifying a stochastic model of uncertainty when experimental data is available. < This book is intended to be a graduate-level textbook for students as well as professionals interested in the theory, computation, and applications of risk and prediction in science and engineering fields.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Fundamental Notions in Stochastic Modeling of Uncertainties and their Propagation in Computational Models -- Elements of Probability Theory -- Markov Process and Stochastic Differential Equation -- MCMC Methods for Generating Realizations and for Estimating the Mathematical Expectation of Nonlinear Mappings of Random Vectors -- Fundamental Probabilistic Tools for Stochastic Modeling of Uncertainties -- Brief Overview of Stochastic Solvers for the Propagation of Uncertainties -- Fundamental Tools for Statistical Inverse Problems -- Uncertainty Quantification in Computational Structural Dynamics and Vibroacoustics -- Robust Analysis with Respect to the Uncertainties for Analysis, Updating, Optimization, and Design -- Random Fields and Uncertainty Quantification in Solid Mechanics of Continuum Media.

This book presents the fundamental notions and advanced mathematical tools in the stochastic modeling of uncertainties and their quantification for large-scale computational models in sciences and engineering. In particular, it focuses in parametric uncertainties, and non-parametric uncertainties with applications from the structural dynamics and vibroacoustics of complex mechanical systems, from micromechanics and multiscale mechanics of heterogeneous materials. Resulting from a course developed by the author, the book begins with a description of the fundamental mathematical tools of probability and statistics that are directly useful for uncertainty quantification. It proceeds with a well carried out description of some basic and advanced methods for constructing stochastic models of uncertainties, paying particular attention to the problem of calibrating and identifying a stochastic model of uncertainty when experimental data is available. < This book is intended to be a graduate-level textbook for students as well as professionals interested in the theory, computation, and applications of risk and prediction in science and engineering fields.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.