Econophysics of the Kolkata Restaurant Problem and Related Games [electronic resource] : Classical and Quantum Strategies for Multi-agent, Multi-choice Repetitive Games / by Bikas K. Chakrabarti, Arnab Chatterjee, Asim Ghosh, Sudip Mukherjee, Boaz Tamir.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: New Economic WindowsПублікація: Cham : Springer International Publishing : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XI, 208 p. 43 illus., 33 illus. in color. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783319613529
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 330.1 23
Класифікація Бібліотеки Конгресу:
  • HB1-846.8
Електронне місцезнаходження та доступ:
Вміст:
Introduction -- Kolkata Paise Restaurant problem -- Phase transition in the Kolkata Paise Restaurant problem -- Zipf’s law from Kolkata Paise Restaurant problem -- Minority Game and Kolkata Paise Restaurant problem -- From classical games, the Kokata Paise Restaurant game, to Quantum Games -- Some recent developments: A brief discussion.
У: Springer eBooksЗведення: This book provides the first comprehensive introduction to multi-agent, multi-choice repetitive games, such as the Kolkata Restaurant Problem and the Minority Game. It explains how the tangible formulations of these games, using stochastic strategies developed by statistical physicists employing both classical and quantum physics, have led to very efficient solutions to the problems posed. Further, it includes sufficient introductory notes on information-processing strategies employing both classical statistical physics and quantum mechanics. Games of this nature, in which agents are presented with choices, from among which their goal is to make the minority choice, offer effective means of modeling herd behavior and market dynamics and are highly relevant to assessing systemic risk. Accordingly, this book will be of interest to economists, physicists, and computer scientists alike.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Introduction -- Kolkata Paise Restaurant problem -- Phase transition in the Kolkata Paise Restaurant problem -- Zipf’s law from Kolkata Paise Restaurant problem -- Minority Game and Kolkata Paise Restaurant problem -- From classical games, the Kokata Paise Restaurant game, to Quantum Games -- Some recent developments: A brief discussion.

This book provides the first comprehensive introduction to multi-agent, multi-choice repetitive games, such as the Kolkata Restaurant Problem and the Minority Game. It explains how the tangible formulations of these games, using stochastic strategies developed by statistical physicists employing both classical and quantum physics, have led to very efficient solutions to the problems posed. Further, it includes sufficient introductory notes on information-processing strategies employing both classical statistical physics and quantum mechanics. Games of this nature, in which agents are presented with choices, from among which their goal is to make the minority choice, offer effective means of modeling herd behavior and market dynamics and are highly relevant to assessing systemic risk. Accordingly, this book will be of interest to economists, physicists, and computer scientists alike.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.