Analysis of Quantised Vortex Tangle [electronic resource] / by Alexander John Taylor.
Вид матеріалу:
Текст Серія: Springer Theses, Recognizing Outstanding Ph.D. ResearchПублікація: Cham : Springer International Publishing : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XVI, 197 p. 95 illus., 84 illus. in color. online resourceТип вмісту: - text
- computer
- online resource
- 9783319485560
- 530.1 23
- QC1-999
ЕКнига
Списки з цим бібзаписом:
Springer Ebooks (till 2020 - Open Access)+(2017 Network Access))
|
Springer Ebooks (2017 Network Access))
Introduction -- Numerical Methods -- Geometry and Scaling of Vortex Lines -- Topological Methods -- Knotting and Linking of Vortex Lines -- Conclusions. .
In this thesis, the author develops numerical techniques for tracking and characterising the convoluted nodal lines in three-dimensional space, analysing their geometry on the small scale, as well as their global fractality and topological complexity---including knotting---on the large scale. The work is highly visual, and illustrated with many beautiful diagrams revealing this unanticipated aspect of the physics of waves. Linear superpositions of waves create interference patterns, which means in some places they strengthen one another, while in others they completely cancel each other out. This latter phenomenon occurs on 'vortex lines' in three dimensions. In general wave superpositions modelling e.g. chaotic cavity modes, these vortex lines form dense tangles that have never been visualised on the large scale before, and cannot be analysed mathematically by any known techniques. .
Available to subscribing member institutions only. Доступно лише організаціям членам підписки.
Online access from local network of NaUOA.
Online access with authorization at https://link.springer.com/
Онлайн-доступ з локальної мережі НаУОА.
Онлайн доступ з авторизацією на https://link.springer.com/
Немає коментарів для цієї одиниці.