Advances in Big Data [electronic resource] : Proceedings of the 2nd INNS Conference on Big Data, October 23-25, 2016, Thessaloniki, Greece / edited by Plamen Angelov, Yannis Manolopoulos, Lazaros Iliadis, Asim Roy, Marley Vellasco.

Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: Advances in Intelligent Systems and Computing ; 529Публікація: Cham : Springer International Publishing : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XVII, 348 p. 101 illus. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783319478982
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 006.3 23
Класифікація Бібліотеки Конгресу:
  • Q342
Електронне місцезнаходження та доступ:
Вміст:
Predicting human behavior based on web search activity: Greek referendum of 2015 -- Compact Video Description and Representation for Automated Summarization of Human Activities -- Attribute Learning for Network Intrusion Detection -- A Fast Deep Convolutional Neural Network for face detection in Big Visual Data -- Learning Symbols by Neural Network -- Designing HMMs models in the age of Big Data -- Extended Formulations for Online Action Selection on Big Action Sets -- Multi-Task Deep Neural Networks for Automated Extraction of Primary Site and Laterality Information from Cancer Pathology Reports -- An infrastructure and approach for infering knowledge over Big Data in the Vehicle Insurance Industry -- Unified Retrieval Model of Big Data -- Adaptive Elitist Differential Evolution Extreme Learning Machines on Big Data: Intelligent Recognition of Invasive Species.
У: Springer eBooksЗведення: The book offers a timely snapshot of neural network technologies as a significant component of big data analytics platforms. It promotes new advances and research directions in efficient and innovative algorithmic approaches to analyzing big data (e.g. deep networks, nature-inspired and brain-inspired algorithms); implementations on different computing platforms (e.g. neuromorphic, graphics processing units (GPUs), clouds, clusters); and big data analytics applications to solve real-world problems (e.g. weather prediction, transportation, energy management). The book, which reports on the second edition of the INNS Conference on Big Data, held on October 23–25, 2016, in Thessaloniki, Greece, depicts an interesting collaborative adventure of neural networks with big data and other learning technologies.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Predicting human behavior based on web search activity: Greek referendum of 2015 -- Compact Video Description and Representation for Automated Summarization of Human Activities -- Attribute Learning for Network Intrusion Detection -- A Fast Deep Convolutional Neural Network for face detection in Big Visual Data -- Learning Symbols by Neural Network -- Designing HMMs models in the age of Big Data -- Extended Formulations for Online Action Selection on Big Action Sets -- Multi-Task Deep Neural Networks for Automated Extraction of Primary Site and Laterality Information from Cancer Pathology Reports -- An infrastructure and approach for infering knowledge over Big Data in the Vehicle Insurance Industry -- Unified Retrieval Model of Big Data -- Adaptive Elitist Differential Evolution Extreme Learning Machines on Big Data: Intelligent Recognition of Invasive Species.

The book offers a timely snapshot of neural network technologies as a significant component of big data analytics platforms. It promotes new advances and research directions in efficient and innovative algorithmic approaches to analyzing big data (e.g. deep networks, nature-inspired and brain-inspired algorithms); implementations on different computing platforms (e.g. neuromorphic, graphics processing units (GPUs), clouds, clusters); and big data analytics applications to solve real-world problems (e.g. weather prediction, transportation, energy management). The book, which reports on the second edition of the INNS Conference on Big Data, held on October 23–25, 2016, in Thessaloniki, Greece, depicts an interesting collaborative adventure of neural networks with big data and other learning technologies.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.