Wavelets in Functional Data Analysis [electronic resource] / by Pedro A. Morettin, Aluísio Pinheiro, Brani Vidakovic.
Вид матеріалу:
Текст Серія: SpringerBriefs in MathematicsПублікація: Cham : Springer International Publishing : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: VIII, 106 p. 44 illus., 25 illus. in color. online resourceТип вмісту: - text
- computer
- online resource
- 9783319596235
- 515.7 23
- QA319-329.9
ЕКнига
Списки з цим бібзаписом:
Springer Ebooks (till 2020 - Open Access)+(2017 Network Access))
|
Springer Ebooks (2017 Network Access))
Preface -- Introduction Examples of Functional Data -- Wavelets -- Wavelet Shrinkage -- Wavelet-based Andrews Plots -- Functional ANOVA -- Further topics.
Wavelet-based procedures are key in many areas of statistics, applied mathematics, engineering, and science. This book presents wavelets in functional data analysis, offering a glimpse of problems in which they can be applied, including tumor analysis, functional magnetic resonance and meteorological data. Starting with the Haar wavelet, the authors explore myriad families of wavelets and how they can be used. High-dimensional data visualization (using Andrews' plots), wavelet shrinkage (a simple, yet powerful, procedure for nonparametric models) and a selection of estimation and testing techniques (including a discussion on Stein’s Paradox) make this a highly valuable resource for graduate students and experienced researchers alike.
Available to subscribing member institutions only. Доступно лише організаціям членам підписки.
Online access from local network of NaUOA.
Online access with authorization at https://link.springer.com/
Онлайн-доступ з локальної мережі НаУОА.
Онлайн доступ з авторизацією на https://link.springer.com/
Немає коментарів для цієї одиниці.