Brauer Groups and Obstruction Problems [electronic resource] : Moduli Spaces and Arithmetic / edited by Asher Auel, Brendan Hassett, Anthony Várilly-Alvarado, Bianca Viray.

Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: Progress in Mathematics ; 320Публікація: Cham : Springer International Publishing : Imprint: Birkhäuser, 2017Видання: 1st ed. 2017Опис: IX, 247 p. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783319468525
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 516.35 23
Класифікація Бібліотеки Конгресу:
  • QA564-609
Електронне місцезнаходження та доступ:
Вміст:
The Brauer group is not a derived invariant -- Twisted derived equivalences for affine schemes -- Rational points on twisted K3 surfaces and derived equivalences -- Universal unramified cohomology of cubic fourfolds containing a plane -- Universal spaces for unramified Galois cohomology -- Rational points on K3 surfaces and derived equivalence -- Unramified Brauer classes on cyclic covers of the projective plane -- Arithmetically Cohen-Macaulay bundles on cubic fourfolds containing a plane -- Brauer groups on K3 surfaces and arithmetic applications -- On a local-global principle for H3 of function fields of surfaces over a finite field -- Cohomology and the Brauer group of double covers.
У: Springer eBooksЗведення: The contributions in this book explore various contexts in which the derived category of coherent sheaves on a variety determines some of its arithmetic. This setting provides new geometric tools for interpreting elements of the Brauer group. With a view towards future arithmetic applications, the book extends a number of powerful tools for analyzing rational points on elliptic curves, e.g., isogenies among curves, torsion points, modular curves, and the resulting descent techniques, as well as higher-dimensional varieties like K3 surfaces. Inspired by the rapid recent advances in our understanding of K3 surfaces, the book is intended to foster cross-pollination between the fields of complex algebraic geometry and number theory. Contributors: · Nicolas Addington · Benjamin Antieau · Kenneth Ascher · Asher Auel · Fedor Bogomolov · Jean-Louis Colliot-Thélène · Krishna Dasaratha · Brendan Hassett · Colin Ingalls · Martí Lahoz · Emanuele Macrì · Kelly McKinnie · Andrew Obus · Ekin Ozman · Raman Parimala · Alexander Perry · Alena Pirutka · Justin Sawon · Alexei N. Skorobogatov · Paolo Stellari · Sho Tanimoto · Hugh Thomas · Yuri Tschinkel · Anthony Várilly-Alvarado · Bianca Viray · Rong Zhou.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

The Brauer group is not a derived invariant -- Twisted derived equivalences for affine schemes -- Rational points on twisted K3 surfaces and derived equivalences -- Universal unramified cohomology of cubic fourfolds containing a plane -- Universal spaces for unramified Galois cohomology -- Rational points on K3 surfaces and derived equivalence -- Unramified Brauer classes on cyclic covers of the projective plane -- Arithmetically Cohen-Macaulay bundles on cubic fourfolds containing a plane -- Brauer groups on K3 surfaces and arithmetic applications -- On a local-global principle for H3 of function fields of surfaces over a finite field -- Cohomology and the Brauer group of double covers.

The contributions in this book explore various contexts in which the derived category of coherent sheaves on a variety determines some of its arithmetic. This setting provides new geometric tools for interpreting elements of the Brauer group. With a view towards future arithmetic applications, the book extends a number of powerful tools for analyzing rational points on elliptic curves, e.g., isogenies among curves, torsion points, modular curves, and the resulting descent techniques, as well as higher-dimensional varieties like K3 surfaces. Inspired by the rapid recent advances in our understanding of K3 surfaces, the book is intended to foster cross-pollination between the fields of complex algebraic geometry and number theory. Contributors: · Nicolas Addington · Benjamin Antieau · Kenneth Ascher · Asher Auel · Fedor Bogomolov · Jean-Louis Colliot-Thélène · Krishna Dasaratha · Brendan Hassett · Colin Ingalls · Martí Lahoz · Emanuele Macrì · Kelly McKinnie · Andrew Obus · Ekin Ozman · Raman Parimala · Alexander Perry · Alena Pirutka · Justin Sawon · Alexei N. Skorobogatov · Paolo Stellari · Sho Tanimoto · Hugh Thomas · Yuri Tschinkel · Anthony Várilly-Alvarado · Bianca Viray · Rong Zhou.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.