Artificial Intelligence Systems Based on Hybrid Neural Networks [electronic resource] : Theory and Applications / by Michael Zgurovsky, Victor Sineglazov, Elena Chumachenko.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: Studies in Computational Intelligence ; 904Публікація: Cham : Springer International Publishing : Imprint: Springer, 2021Видання: 1st ed. 2021Опис: XV, 512 p. 334 illus., 215 illus. in color. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783030484538
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 006.3 23
Класифікація Бібліотеки Конгресу:
  • Q342
Електронне місцезнаходження та доступ:
Вміст:
Classification and Analysis Topologies Known Artificial Neurons and Neural Networks -- Classification and Analysis of Multicriteria Optimization Methods -- Formation of Hybrid Artificial Neural Networks Topologies -- Development of Hybrid Neural Networks -- Intelligence Methods of Forecasting -- Intelligent System of Thyroid Pathology Diagnostics -- Intelligent Automated Road Management Systems -- Fire Surveillance Information Systems.
У: Springer Nature eBookЗведення: This book is intended for specialists as well as students and graduate students in the field of artificial intelligence, robotics and information technology. It is will also appeal to a wide range of readers interested in expanding the functionality of artificial intelligence systems. One of the pressing problems of modern artificial intelligence systems is the development of integrated hybrid systems based on deep learning. Unfortunately, there is currently no universal methodology for developing topologies of hybrid neural networks (HNN) using deep learning. The development of such systems calls for the expansion of the use of neural networks (NS) for solving recognition, classification and optimization problems. As such, it is necessary to create a unified methodology for constructing HNN with a selection of models of artificial neurons that make up HNN, gradually increasing the complexity of their structure using hybrid learning algorithms. .
Тип одиниці:
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Classification and Analysis Topologies Known Artificial Neurons and Neural Networks -- Classification and Analysis of Multicriteria Optimization Methods -- Formation of Hybrid Artificial Neural Networks Topologies -- Development of Hybrid Neural Networks -- Intelligence Methods of Forecasting -- Intelligent System of Thyroid Pathology Diagnostics -- Intelligent Automated Road Management Systems -- Fire Surveillance Information Systems.

This book is intended for specialists as well as students and graduate students in the field of artificial intelligence, robotics and information technology. It is will also appeal to a wide range of readers interested in expanding the functionality of artificial intelligence systems. One of the pressing problems of modern artificial intelligence systems is the development of integrated hybrid systems based on deep learning. Unfortunately, there is currently no universal methodology for developing topologies of hybrid neural networks (HNN) using deep learning. The development of such systems calls for the expansion of the use of neural networks (NS) for solving recognition, classification and optimization problems. As such, it is necessary to create a unified methodology for constructing HNN with a selection of models of artificial neurons that make up HNN, gradually increasing the complexity of their structure using hybrid learning algorithms. .

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.