Knowledge Engineering and Knowledge Management [electronic resource] : EKAW 2016 Satellite Events, EKM and Drift-an-LOD, Bologna, Italy, November 19–23, 2016, Revised Selected Papers / edited by Paolo Ciancarini, Francesco Poggi, Matthew Horridge, Jun Zhao, Tudor Groza, Mari Carmen Suarez-Figueroa, Mathieu d'Aquin, Valentina Presutti.

Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: Lecture Notes in Artificial Intelligence ; 10180Публікація: Cham : Springer International Publishing : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XIV, 288 p. 61 illus. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783319586946
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 006.3 23
Класифікація Бібліотеки Конгресу:
  • Q334-342
Електронне місцезнаходження та доступ: У: Springer eBooksЗведення: This book contains the best selected papers of two Satellite Events held at the 20th International Conference on Knowledge Engineering and Knowledge Management, EKAW 2016, in November 2016 in Bologna, Italy: The Second International Workshop on Educational Knowledge Management, EKM 2016, and the First Workshop: Detection, Representation and Management of Concept Drift in Linked Open Data, Drift-an-LOD 2016. The 6 revised full papers included in this volume were carefully reviewed and selected from the 13 full papers that were accepted for presentation at the conference from the initial 82 submissions. This volume also contains the 37 accepted contributions for the EKAW 2016 tutorials, demo and poster sessions, and the doctoral consortium. The special focus of this year's EKAW was "evolving knowledge", which concerns all aspects of the management and acquisition of knowledge representations of evolving, contextual, and local models. This includes change management, trend detection, model evolution, streaming data and stream reasoning, event processing, time-and space dependent models, contextual and local knowledge representations with a special emphasis on the evolvability and localization of knowledge and the correct usage of these limits.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

This book contains the best selected papers of two Satellite Events held at the 20th International Conference on Knowledge Engineering and Knowledge Management, EKAW 2016, in November 2016 in Bologna, Italy: The Second International Workshop on Educational Knowledge Management, EKM 2016, and the First Workshop: Detection, Representation and Management of Concept Drift in Linked Open Data, Drift-an-LOD 2016. The 6 revised full papers included in this volume were carefully reviewed and selected from the 13 full papers that were accepted for presentation at the conference from the initial 82 submissions. This volume also contains the 37 accepted contributions for the EKAW 2016 tutorials, demo and poster sessions, and the doctoral consortium. The special focus of this year's EKAW was "evolving knowledge", which concerns all aspects of the management and acquisition of knowledge representations of evolving, contextual, and local models. This includes change management, trend detection, model evolution, streaming data and stream reasoning, event processing, time-and space dependent models, contextual and local knowledge representations with a special emphasis on the evolvability and localization of knowledge and the correct usage of these limits.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.