From Basic Survival Analytic Theory to a Non-Standard Application [electronic resource] / by Georg Zimmermann.
Вид матеріалу:
Текст Серія: BestMastersПублікація: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2017Видання: 1st ed. 2017Опис: IX, 100 p. 9 illus. online resourceТип вмісту: - text
- computer
- online resource
- 9783658177195
- 519.2 23
- QA273.A1-274.9
- QA274-274.9
ЕКнига
Списки з цим бібзаписом:
Springer Ebooks (till 2020 - Open Access)+(2017 Network Access))
|
Springer Ebooks (2017 Network Access))
Regression Models for Survival Data -- Model Checking Procedures -- Life Expectancy.
Georg Zimmermann provides a mathematically rigorous treatment of basic survival analytic methods. His emphasis is also placed on various questions and problems, especially with regard to life expectancy calculations arising from a particular real-life dataset on patients with epilepsy. The author shows both the step-by-step analyses of that dataset and the theory the analyses are based on. He demonstrates that one may face serious and sometimes unexpected problems, even when conducting very basic analyses. Moreover, the reader learns that a practically relevant research question may look rather simple at first sight. Nevertheless, compared to standard textbooks, a more detailed account of the theory underlying life expectancy calculations is needed in order to provide a mathematically rigorous framework. Contents Regression Models for Survival Data Model Checking Procedures Life Expectancy Target Groups Researchers, lecturers, and students in the fields of mathematics and statistics Academics and experts working in the life sciences, especially in the medical field The Author Georg Zimmermann is a PhD student at the University of Salzburg and research associate at Christian-Doppler-Klinik, Salzburg.
Available to subscribing member institutions only. Доступно лише організаціям членам підписки.
Online access from local network of NaUOA.
Online access with authorization at https://link.springer.com/
Онлайн-доступ з локальної мережі НаУОА.
Онлайн доступ з авторизацією на https://link.springer.com/
Немає коментарів для цієї одиниці.