The Theory of Nilpotent Groups [electronic resource] / by Anthony E. Clement, Stephen Majewicz, Marcos Zyman.
Вид матеріалу:
Текст Публікація: Cham : Springer International Publishing : Imprint: Birkhäuser, 2017Видання: 1st ed. 2017Опис: XVII, 307 p. online resourceТип вмісту: - text
- computer
- online resource
- 9783319662138
- 512.2 23
- QA174-183
ЕКнига
Списки з цим бібзаписом:
Springer Ebooks (till 2020 - Open Access)+(2017 Network Access))
|
Springer Ebooks (2017 Network Access))
Commutator Calculus -- Introduction to Nilpotent Groups -- The Collection Process and Basic Commutators -- Normal Forms and Embeddings -- Isolators, Extraction of Roots, and P-Localization -- "The Group Ring of a Class of Infinite Nilpotent Groups" by S. A. Jennings -- Additional Topics.
This monograph presents both classical and recent results in the theory of nilpotent groups and provides a self-contained, comprehensive reference on the topic. While the theorems and proofs included can be found throughout the existing literature, this is the first book to collect them in a single volume. Details omitted from the original sources, along with additional computations and explanations, have been added to foster a stronger understanding of the theory of nilpotent groups and the techniques commonly used to study them. Topics discussed include collection processes, normal forms and embeddings, isolators, extraction of roots, P-localization, dimension subgroups and Lie algebras, decision problems, and nilpotent groups of automorphisms. Requiring only a strong undergraduate or beginning graduate background in algebra, graduate students and researchers in mathematics will find The Theory of Nilpotent Groups to be a valuable resource.
Available to subscribing member institutions only. Доступно лише організаціям членам підписки.
Online access from local network of NaUOA.
Online access with authorization at https://link.springer.com/
Онлайн-доступ з локальної мережі НаУОА.
Онлайн доступ з авторизацією на https://link.springer.com/
Немає коментарів для цієї одиниці.