Numerical Partial Differential Equations in Finance Explained [electronic resource] : An Introduction to Computational Finance / by Karel in 't Hout.
Вид матеріалу:
Текст Серія: Financial Engineering ExplainedПублікація: London : Palgrave Macmillan UK : Imprint: Palgrave Macmillan, 2017Видання: 1st ed. 2017Опис: XIV, 128 p. 42 illus. online resourceТип вмісту: - text
- computer
- online resource
- 9781137435699
- 332 23
- HG176.7
ЕКнига
Списки з цим бібзаписом:
Springer Ebooks (till 2020 - Open Access)+(2017 Network Access))
|
Springer Ebooks (2017 Network Access))
Chapter1. Financial option valuation.-Chapter2. Partial differential equations -- Chapter3 Spatial discretization I -- Chapter4. Spatial discretization II -- Chapter5. Numerical study: space -- Chapter6. The Greeks -- Chapter7. Temporal discretization -- Chapter8. Numerical study: time -- Chapter9. Cash-or-nothing options -- Chapter10. Barrier options -- Chapter11. American-style options -- Chapter12. Merton model -- Chapter13. Two-asset options.
This book provides a first, basic introduction into the valuation of financial options via the numerical solution of partial differential equations (PDEs). It provides readers with an easily accessible text explaining main concepts, models, methods and results that arise in this approach. In keeping with the series style, emphasis is placed on intuition as opposed to full rigor, and a relatively basic understanding of mathematics is sufficient. The book provides a wealth of examples, and ample numerical experiments are givento illustrate the theory. The main focus is on one-dimensional financial PDEs, notably the Black-Scholes equation. The book concludes with a detailed discussion of the important step towards two-dimensional PDEs in finance.
Available to subscribing member institutions only. Доступно лише організаціям членам підписки.
Online access from local network of NaUOA.
Online access with authorization at https://link.springer.com/
Онлайн-доступ з локальної мережі НаУОА.
Онлайн доступ з авторизацією на https://link.springer.com/
Немає коментарів для цієї одиниці.