Measure Theory and Probability [electronic resource] / by Malcolm Adams, Victor Guillemin.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: The Wadsworth & Brooks/Cole Mathematics SeriesПублікація: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 1996Видання: 1st ed. 1996Опис: XVI, 206 p. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9781461207795
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 515.42 23
Класифікація Бібліотеки Конгресу:
  • QA312-312.5
Електронне місцезнаходження та доступ:
Вміст:
1 Measure Theory -- 2 Integration -- 3 Fourier Analysis -- Appendix A Metric Spaces -- Appendix C A Non-Measurable Subset of the Interval (0, 1] -- References.
У: Springer Nature eBookЗведення: Measure theory and integration are presented to undergraduates from the perspective of probability theory. The first chapter shows why measure theory is needed for the formulation of problems in probability, and explains why one would have been forced to invent Lebesgue theory (had it not already existed) to contend with the paradoxes of large numbers. The measure-theoretic approach then leads to interesting applications and a range of topics that include the construction of the Lebesgue measure on R [superscript n] (metric space approach), the Borel-Cantelli lemmas, straight measure theory (the Lebesgue integral). Chapter 3 expands on abstract Fourier analysis, Fourier series and the Fourier integral, which have some beautiful probabilistic applications: Polya's theorem on random walks, Kac's proof of the Szegö theorem and the central limit theorem. In this concise text, quite a few applications to probability are packed into the exercises. "…the text is user friendly to the topics it considers and should be very accessible…Instructors and students of statistical measure theoretic courses will appreciate the numerous informative exercises; helpful hints or solution outlines are given with many of the problems. All in all, the text should make a useful reference for professionals and students."—The Journal of the American Statistical Association.
Тип одиниці:
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

1 Measure Theory -- 2 Integration -- 3 Fourier Analysis -- Appendix A Metric Spaces -- Appendix C A Non-Measurable Subset of the Interval (0, 1] -- References.

Measure theory and integration are presented to undergraduates from the perspective of probability theory. The first chapter shows why measure theory is needed for the formulation of problems in probability, and explains why one would have been forced to invent Lebesgue theory (had it not already existed) to contend with the paradoxes of large numbers. The measure-theoretic approach then leads to interesting applications and a range of topics that include the construction of the Lebesgue measure on R [superscript n] (metric space approach), the Borel-Cantelli lemmas, straight measure theory (the Lebesgue integral). Chapter 3 expands on abstract Fourier analysis, Fourier series and the Fourier integral, which have some beautiful probabilistic applications: Polya's theorem on random walks, Kac's proof of the Szegö theorem and the central limit theorem. In this concise text, quite a few applications to probability are packed into the exercises. "…the text is user friendly to the topics it considers and should be very accessible…Instructors and students of statistical measure theoretic courses will appreciate the numerous informative exercises; helpful hints or solution outlines are given with many of the problems. All in all, the text should make a useful reference for professionals and students."—The Journal of the American Statistical Association.

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.