000 04616nam a22006615i 4500
001 978-3-030-95860-2
003 DE-He213
005 20240828123459.0
007 cr nn 008mamaa
008 220513s2022 sz | s |||| 0|eng d
020 _a9783030958602
_9978-3-030-95860-2
024 7 _a10.1007/978-3-030-95860-2
_2doi
050 4 _aQ325.5-.7
072 7 _aUYQM
_2bicssc
072 7 _aMAT029000
_2bisacsh
072 7 _aUYQM
_2thema
082 0 4 _a006.31
_223
100 1 _aPillonetto, Gianluigi.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_97364
245 1 0 _aRegularized System Identification
_h[electronic resource] :
_bLearning Dynamic Models from Data /
_cby Gianluigi Pillonetto, Tianshi Chen, Alessandro Chiuso, Giuseppe De Nicolao, Lennart Ljung.
250 _a1st ed. 2022.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2022.
300 _aXXIV, 377 p. 85 illus., 73 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aCommunications and Control Engineering,
_x2197-7119
505 0 _aChapter 1. Bias -- Chapter 2. Classical System Identification -- Chapter 3. Regularization of Linear Regression Models -- Chapter 4. Bayesian Interpretation of Regularization -- Chapter 5. Regularization for Linear System Identification -- Chapter 6. Regularization in Reproducing Kernel Hilbert Spaces -- Chapter 7. Regularization in Reproducing Kernel Hilbert Spaces for Linear System Identification -- Chapter 8. Regularization for Nonlinear System Identification -- Chapter 9. Numerical Experiments and Real-World Cases.
506 0 _aOpen Access
520 _aThis open access book provides a comprehensive treatment of recent developments in kernel-based identification that are of interest to anyone engaged in learning dynamic systems from data. The reader is led step by step into understanding of a novel paradigm that leverages the power of machine learning without losing sight of the system-theoretical principles of black-box identification. The authors’ reformulation of the identification problem in the light of regularization theory not only offers new insight on classical questions, but paves the way to new and powerful algorithms for a variety of linear and nonlinear problems. Regression methods such as regularization networks and support vector machines are the basis of techniques that extend the function-estimation problem to the estimation of dynamic models. Many examples, also from real-world applications, illustrate the comparative advantages of the new nonparametric approach with respect to classic parametric prediction error methods. The challenges it addresses lie at the intersection of several disciplines so Regularized System Identification will be of interest to a variety of researchers and practitioners in the areas of control systems, machine learning, statistics, and data science. In many ways, this book is a complement and continuation of the much-used text book L. Ljung, System Identification, 978-0-13-656695-3. This is an open access book.
650 0 _aMachine learning.
650 0 _aControl engineering.
_9618
650 0 _aSystem theory.
_9260
650 0 _aStatistics .
_9905
650 0 _aControl theory.
650 1 4 _aMachine Learning.
650 2 4 _aControl and Systems Theory.
650 2 4 _aComplex Systems.
_9267
650 2 4 _aBayesian Inference.
650 2 4 _aStatistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences.
_9910
650 2 4 _aSystems Theory, Control.
700 1 _aChen, Tianshi.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_97371
700 1 _aChiuso, Alessandro.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_97372
700 1 _aDe Nicolao, Giuseppe.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_97373
700 1 _aLjung, Lennart.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_97374
710 2 _aSpringerLink (Online service)
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783030958596
776 0 8 _iPrinted edition:
_z9783030958619
776 0 8 _iPrinted edition:
_z9783030958626
830 0 _aCommunications and Control Engineering,
_x2197-7119
_97375
856 4 0 _uhttps://doi.org/10.1007/978-3-030-95860-2
912 _aZDB-2-ENG
912 _aZDB-2-SXE
912 _aZDB-2-SOB
999 _c572538
_d572538